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Saddle-node bifurcation: Appearance mechanism of pulses in the subcritical complex
Ginzburg-Landau equation

PHYSICAL REVIEW E 67, 015601R) (2003

O. Descalzi
Facultad de Ingeniéa, Universidad de los Andes, Avenida San Carlos de Apoquindo 2200, Santiago, Chile

M. Argentina and E. Tirapegui
Departamento de Bica, FCFM Universidad de Chile, Casilla 487-3, Santiago, Chile
(Received 4 February 2002; published 21 January 003

We study stationary, localized solutions in the complex subcritical Ginzburg-Landau equation in the region
where there exists coexistence of homogeneous attractors. Using a matching approach, we report on the fact
that the appearance of pulses are related to a saddle-node bifurcation. Numerical simulations are in good
agreement with our theoretical predictions.
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Spatially extended nonequilibrium systems often shO\MNhereriz:(—ﬁri VBZ=4vy, 1) 2y, and ¢, is an arbitrary
coherent or localized structures that may take the form ophase. The existence of solutions; , requires thatu
propagating kinks, oscillating pulses, or standing fronts, to>g2/4,, . However, inside this range onlp, is stable
mention a few(for a survey, see Ref1]). The dynamics of against small perturbations. It is easy to see thgt0 is
these localized structures may be either stationary, periodigsg a solution of Eq(1), but it is stable only foru<0.

or chaotic. A fampus example is the m_otion of a '0‘?a|izedTherefore the stable solutiors, and A, coexist f0r,8,2/4yr
and turbulent region surrounded by laminar flows, which aP< ,<0. Inside this region, where the stable homogeneous

pears in many open flow experimeri@], such as Taylor- o tions coexist, numerically oscillating stable pulses have
Couette flow with counter-rotating cylinder channel flows been observef25—29

[3], plane Poiseuille flow4,5]. At the onset of binary fluid

: ) . The aim of this paper is to present an explicit analytic
convection, standing and localized waves have also been o pap P b y

i lati S ) | Q’pproximation of these, pulses which also exhibits in a clear
served[6-10. Localized oscillations in vibrating granular way their mechanism of appearance, which is a saddle-node

layer constitute another exampilél,12). More recently, €X-  iyrcation. This mechanism is well known in the variational
periments in electroconvection of nematic liquid crystals;i‘

howed that localized v bif 16,17 and in the conservative limi{®7], and our approxi-
showed that localized structures may eventually bifurcate t@, a4 shows that far away from these two limit cases pulses
chaos[13]. Hence, it appears quite important to understan

h h Cani ¢ . he phvsical f Eg}ppear and disappear through a saddle-node bifurcation. Our
what are the mechanisms of creation, or the physical featur rategy consists of calculating the pulse inside and outside

necessary, 10 sustain such structures. Some approaches Bgls core and then to match the approximate solutions in the

mit to describe the existence of these entities. For examplgy, ey of the regions, imposing there continuity of the am-
pinning effect of local compact structurgseriodic standing plitude, the phase, and the derivative of the amplitude.

wave in one spatial dimensionpermit to explain the exis- The starting point is the ansatz=Ry(x), ¢=Qt
tence of such localized entiti¢$4,15. Another approach is 6o(x), whereQ is the oscillating frequency of the pulse,

the study of subcritical instabilities, where two stable states, 1+ is an unknown parameter to be determined. This an-
may coexist for some range of parameters, and this is thgatz has been first introduced in REZ6]. We assume that
situation we consider here. We shall study the localized o

Sthe the tails of the pulses go to zero at infinit
cillating solutions observed in the subcritical Ginzburg P 9 y

. . “[lim Ry(x)=0]. Replacing this ansatz in Eql), we
Landau equation that can be written as [ |x| o0 o()=0] b 9 q2)

obtain the following equations:

&tA:MA""(Br+iﬁi)|A|2A+(7r+i7i)|A|4A+‘9xxAv 0 OZMR0+BrR8+ 'VrR(5)+R0xx_R00§><! ()
1
QRy=BiR3+ ¥iR5+ 2Rox ox + Ro foxx - (4)

where A(x,t)=r expi¢ is a complex field. Here dispersive T4 solve Eqs(3) and(4) we proceed to separate the pulse
effects have been neglected and will be taken into accounj o regions, namely, inside the core and outside the core
elsewhere. Great efforts have been devoted to the study @f the pulse, and then we perform a matching. Inside the core

this equation[16—24,26—-29 The signs of the parameters ;¢ suppose that the moduy(x) admits a Taylor expan-
B:>0 andy,<0 are chosen in order to guarantee that thesion, so that

bifurcation is subcritical and saturates to quintic order. Equa-
tion (1) admits a class of homogeneous time-periodic solu- Ro(X)=Ry— ex?+o(x%), (5)
tions,
where R, is the greatest value dRy(x), and the second
. ) 4 unknown. At leading order, the Taylor expansion of the
A=t exdi([BirL ot ¥ir1olt+ o) ], (2 phase gradient is determined by
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Oox(X) = — ax+0o(x3). 6 0 0
OX( ) a ( ) ( ) f RédX f Rng
We suppose that the pulse is not breaking the reflection Q-5 - - - =0. (12
symmetry k— —x). ReplacingRy(x) andfp,(x) in Egs.(3) fo R2dx JO R2dx
and (4), we obtain w0 . 0

1 3 s The integrals in Eq(12) can be evaluated, and one gets
€= E(MRm+BrRm+ YR,

J'o .y Jb ot ﬁ(u§+2)‘ ,
X= n —R%x
a=BiR:+ yRE— Q. W) — O 2y=utp? atbuZ-2)| ™"
Of course, we can include higher-order terms in Egs. n ER 3 (13)
and (6), but they are not necessary for the purpose of this 3 m
paper.
At dominant order and outside the core of the pulse, we (o . (a2—4b)b+ab\/5ui
suppose that the phase gradiehf(x) is determined by f Rpdx=— > > 2
Box(X)=p for x<<0 andfo,(x)=—p for x>0. SinceRy(X) o =+ pA—4b+(a+ Jbu)?]
oes asymptotically to zero, from Eq®) and (4), we de-
guce ymp y 0sR) and (4) at VB(UZ +2)
avbin — =
V=p+p? - atbu, ~2) Rix. + 2R3 63
_ _ - —RLEXS .
Q=2py—put+p-. (8) 4\/W m®x T 3 RmE
We then see thd is related top, and we remain finally (14)

with two unknowns:R,, andp. Solving Eq.(3) in the bulk,
where the phase gradient is constant, we obtain

fo R&d vb
X:
— O 16—t pA — b+ (at Vbul)?]?

2bexp{ N — u+p?(|X| +xo)}

Ro(x)=

2 X
==
b

Vb © +4b)—12a(3a%—4b)b32u; + 4b%(—3a?

—12a/b(a?—4b)?>—4bu? (a®- 4b)(9a?

+4b)ub + (3a2—4b)[ —4b+ (a+ Vbu? )22
wherea= —3p,/2y, andb=—3(— u+p?)/ 7, . YUy +( i (a+buZ)?]

Once we have calculateRy(x) inside and outside the a+ \/E(ui+2)
core of the pulse, we proceed to match both functions at the XIn| ——=——— | ~RyX, +2Ryex; .
point (X, ,r¢)=(—p/a,Ry— exi), wherer is the value of at \/B(u* ~2)
Ro(x) at the matching point. UsinBqy(x) outside the core, (15

by inverting relation(9), we get ) _ _
The above integrals together with the valugbfjiven by

a 2\/5 2 relations(8) and(12) enable us to obtain the second relation,
uZ=-— T+ ——+ —\re—arg+b, (100 which from now on will be referred ag(R,,,p)=0. The
b rg rg matching is accomplished by computif®,,,p}, such that
f=g=0.
where u, =exp{—V—u+pi(X, —Xo)}. Then X=X, With these schemes, two pulses are found in a finite re-
+(Inu, /= pu+p9). gion for negativer, and one pulse for positive. We draw

We now impOS-e that the derivatiwo(X)/dX outside the the Curvesf(Rm , p) =0 (Continuous ||na; and g(Rm , p) =0
core[Eqg. (9)] and inside the corgEq. (5)] should be equal at  (dashed ling consideringu=—0.486 in Fig. 1a). It is seen
X=X, . This gives a first relation betwedry, andp, which  that the curves intersect twice, implying the existence of two

reads pulses. By further decreasing, the curves do not cross at
any point, suggesting that the pulses do not exist anymore
B P o sy e _ [see Fig.(1(b)]. At u=u.=—0.489, the two solutions dis-
3 feyrc—arctb+2ex, =0. (11) appear by coalescence. This disappearance is therefore asso-

ciated to a saddle-node bifurcation occurring in the func-
From now on we shall refer to Eq11) asf(R,,p)=0. tional space. Hence, after the bifurcatiop,>pu., one
We need a second relation in order to be able to fix the fresolution must be stable and the other one unstable. In such a
parameter§R,,,p} of the ansatz, and it can be obtained case, the spectrum of the linearized operator at the unstable
(following Ref. [26]) by multiplying Eq.(4) by Ry(x) and  pulse has a unique positive eigenvalue. Hence the
integrating in the whole domain. This gives codimension-1 stable manifold of the unstable pulse must act
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0.76 FIG. 3. (a) Shape of the stable pulse predicted by the analytical
’ approach(continuous ling and by numericgdashed ling (b) The
gradient of the phase.
0.74
as a separatrix in functional space determining the nucleation
072 barrier that permits the creation of the stable pulse from the
homogeneous state. To see explicitly the character of the
’ saddle-node bifurcation, we calculgfe as a function ofu
0.7 P /\fv'\ (see Fig. 2 using the bifurcation softwarauTo 2000 [30].
. Y We obtain the two expected branches, and we compare them

0.28 0.3 032 034 036 038 »p

FIG. 1. (a) For u=—0.486> u. the curves cut at two points,
giving origin to pulses with R,,=0.708p=0.305) and R,
=0.767p=0.366).(b) For u=—0.5< u, the curves do not cut at
any point: there are no pulses. Values of the parameterg3are
=3, Bi=1, y,=—2.75, andy;=1. The value ofu. is —0.489.

< (b)
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FIG. 2. Bifurcation diagram for pulses. The thin continuous line
corresponds to stable pulses and the thin dashed line to unstable FIG. 4. (a) Module of the stable pulse close to the Maxwell
pulses. These two branches are computed from the analytical ajpoint predicted by the analytical approa@ontinuous ling¢ and by
proximation. The thick continuous line is computed with the bifur- a numerical simulation(dashed ling Parameter values arg
cation softwareauto 2000 The values of the parameters are the —uy=0.0286,8,=3, 3;=0.343,y,= —2.75, andy;=0. (b) The
same as in Fig. 1. gradient of the phase.

015601-3



RAPID COMMUNICATIONS

O. DESCALZI, M. ARGENTINA, AND E. TIRAPEGUI PHYSICAL REVIEW E67, 015601R) (2003

with the analytical approximation. One of them correspondsnethod generates pulses with a similar shape to those ob-
to the stable pulses and the other one to the unstable pulseained directly from the numerical simulation. Figure 4

The lower branch appears at=0, and this is understood shows the module and the phase gradient of one stable pulse
as a bifurcation of the homogeneous stéig Since this close to the Maxwell point. We can see that the valueR f
latter is subcritical, this means that the lower branch repreand the asymptotical value of the phase gradient of our ana-
sents unstable solutions. By further decreasing the parametgtical approximation are very close to the exact values ob-
w, the lower branch folds into the upper one: this is thetained from the numerical simulation. Moreover, we obtain
saddle-node bifurcation reported above. Direct numericafrom our method that the width of the pulses divergesuas
simulation show that points in the upper branch correspond, 4, .
as expected, to stable pulses. In conclusion, using a simple method we have constructed

The analytical prediction is also checked with a numericalapproximately pulses in the complex subcritical Ginzburg-
integration of Eq(1): it results that foru < —0.468 there are  Landau equation with nondispersive terms. However, this re-
no stable pulses. This result agrees within 5% with our apstriction may be overcomgs1], and the conservative limit
proach. To compare the shape of the pulses, we consider tikan then be approached using the same procedure. The ap-
particular value ofu= —0.46 and the parameters mentionedproximation scheme presented here is valid through the
above. Our approximation predicts two pulses after theavhole intermediate range of parameters between the varia-
curves f(Ry,,p)=0 and g(R,,,p)=0 cut in two points, tional and the conservative limit, and remains valid in both
namely (p=0.250R,,=0.643) and p=0.434R,,=0.821). limits as we have discussed.

In Fig. 3 we show the shape and the phase gradient of the E.T. and O.D. wish to thank the Fondo de Ayuda a la
pulse obtained with our analytical approdcbntinuous ling  Investigacim of the Universidad de los Andé®roject No.
and with our numerical simulatiofdashed ling The values ICIV-001-02 and the FONDECYT(Project No. 1020374
of R,,, the asymptotical value of the phase gradient, and th&1.A. acknowledges support from the FONDECYProject
sizes of the stable pulses agree within 1% with our approxiNo. 3000017. We would like to thank Professor M. G. Clerc
mation. (Universidad de Chileand Professor H. R. BrandJniver-

One interesting limit to be studied is the variational limit. sitaet Bayreuth, Germahyor many useful discussions. The
As it is known from Ref[16] in this limit, pulses exist inside numerical simulation has been performed using the software
a finite interval limited by two saddle-node bifurcation developed in the Institute Non-liage de Nice, France. We
curves. This interval converges to zero as we approach thare indebted to Professor P. Coulibtice) for allowing us to
Maxwell point (,u—>,u,v|=3,8r2/16y, ;Bi—0;y;—0). Our use this software.
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